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ABSTRACT

This study assesses the skill of multimodel forecasts of 10-m wind speed, significant wave height, and

mean wave period in the North Atlantic for the winter months. The 10-m winds from four North American

multimodel ensemble models and three European Multimodel Seasonal-to-Interannual Prediction project

(EUROSIP) models are used to force WAVEWATCH III experiments. Ten ensembles are used for each

model. All three variables can be predicted using December initial conditions. The spatial maps of rank

probability skill score are explained by the impact of the North Atlantic Oscillation (NAO) on the large-

scale wind–wave relationship. Two winter case studies are investigated to understand the relationship

between large-scale environmental conditions such as sea surface temperature, geopotential height at

500 hPa, and zonal wind at 200 hPa to the NAO and the wind–wave climate. The very strong negative NAO

in 2008/09 was not well forecast by any of the ensembles while most models correctly predicted the sign of

the event. This led to a poor forecast of the surface wind and waves. A Monte Carlo model combination

analysis is applied to understand howmany models are needed for a skillful multimodel forecast. While the

grand multimodel ensemble provides robust skill, in some cases skill improves once some models are not

included.

1. Introduction

Accurate seasonal forecasts of wind and waves in the

North Atlantic will provide benefits to coastal land

management (Tsimplis et al. 2005), marine vessel routing

(Coll et al. 2013; Heij and Knapp 2015; Bell and Kirtman

2018), renewable energy (Clark et al. 2017; Torralba et al.

2017), and oil and gas activities (Colman et al. 2011).

The variability of the winter North Atlantic wind–

wave climate is dominated by a small number of modes.

Previous studies have shown the North Atlantic Os-

cillation (NAO) to have the dominant effect on

wind–wave variability and, to a lesser degree, the east

Atlantic pattern (Bacon and Carter 1991; Wolf and

Woolf 2006; Dodet et al. 2010; Stopa and Cheung 2014;

Martínez-Asensio et al. 2016; Castelle et al. 2017;

Zubiate et al. 2017). The NAO is the term given to the

north–south oscillation of mass that results in variability

of the latitude of the North Atlantic midlatitude storm

track, which is most prominent in winter (Stephenson

et al. 2003). It is traditionally measured using mean sea

level pressure (MSLP) fluctuations between Iceland

and the Azores. During the NAO’s positive (negative)

phase the storm track takes more of a northerly

(southerly) track.

It is important to understand the dynamics of the

NAO to understand sources of predictability. The self-

maintaining nature of the North Atlantic storm track is

discussed in Hoskins and Valdes (1990) and Ambaum

and Novak (2014). However, we are more interested in

how the storm track behaves overall during the winter

months. Brayshaw et al. (2009) noted that midlatitude

orography and the land–sea temperature contrast on the

east coast of North America play a role in determining the

southwest–northeast tilt of the upper-tropospheric jet. In

addition, sea surface temperature (SST) gradients in the

NorthAtlantic act to perturb the jet stream.Gradients in the
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western North Atlantic, such as the Gulf Stream, strengthen

the jet downstream, while gradients in the North Atlantic

Current weaken the jet (Brayshaw et al. 2009; O’Reilly

et al. 2017b).

In addition, the NAO is influenced by remote SSTs,

such as those in the tropical Pacific. The mechanisms by

which ENSO influences the NAO remain unclear and

are a topic of debate. Some studies look at the strato-

spheric pathway, where during warm events (El Niños)
the polar vortex weakens and the frequency of sudden

stratospheric warming events increases (Butler et al.

2017). These events descend from the stratosphere,

weakening the upper-level westerlies and the re-

sultant NAO is negative (Brönnimann et al. 2007; Bell

et al. 2009; Hansen et al. 2017). Kim et al. (2012) found

the seasonal forecast model CFSv2 simulates this El

Niño–negative NAO response better than the sea-

sonal forecast model ECMWF System 4. Others argue

for a tropospheric pathway via the role of quasi-

stationary waves kicked off from diabatic heating in

the tropical Pacific, which are enhanced by eddy–

mean flow interactions in the extratropics (Graf and

Zanchettin 2012; Jiménez-Esteve and Domeisen 2018).

Butler et al. (2014) separate these two pathways and

find the stratospheric pathway mostly influences the

North Atlantic, whereas the tropospheric pathway

mostly influences North America. It is also possible El

Niño–Southern Oscillation (ENSO) SSTs can modu-

late North Atlantic north tropical SSTs (Alexander

et al. 2002), which then in turn affect the NAO. Zhang

et al. (2018) found that the ENSO–NAO relationship

is highly nonlinear and can depend on the type of

ENSO event. Finally, SSTs in the South Atlantic are

also thought to play a role in the NAO via a barotropic

response to upper-level convergence over the Carib-

bean (Robertson et al. 2000).

Despite seasonal forecasts often struggling in the

extratropics due to a low signal-to-noise ratio (Eade

et al. 2014), recent studies have found the NAO to be

predictable on seasonal time scales (Scaife et al. 2014;

Siegert et al. 2016; Yang et al. 2015; Dunstone et al. 2016;

Jha et al. 2016; Athanasiadis et al. 2017; Wang et al.

2017). This is in part due to the drivers of seasonal

NAO variability being predictable on seasonal time

scales. For example, tropical Pacific SSTs are often at

the crux of a skillful seasonal forecast (Shukla 1998)

and its impact on the NAO is captured in the Global

Seasonal Forecast System version 5 (GloSea5) model

[see Fig. 2 in Scaife et al. (2014)], which has good skill

at forecasting the NAO. Atlantic SST has also shown

to be predictable on seasonal time scales (Rodwell

and Folland 2002), such as in the North Atlantic

subpolar gyre.
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While it is important to understand and predict the

physical mechanisms forcing the NAO (Scaife et al.

2016), the role of ensembles and multimodel fore-

casts increases the skill of forecasting the NAO.

Figure 3 in Scaife et al. (2014) shows that increasing

the number of ensembles increases the correlation of

the ensemble-mean forecast with the observed

NAO. This skill limit is determined by the quotient

of how well the ensemble members correlate with

the observations over the correlation between pairs

of ensembles members. Sardeshmukh et al. (2000)

and Eade et al. (2014) also note how reliable pre-

dictions may be achieved using a large ensemble size

to reduce noise. Multimodel forecasts have shown their

benefit over a single model forecast in recent years

(Palmer et al. 2004; Kirtman et al. 2014), especially in

their superiority of probabilistic verification metrics.

The skill increase in multimodel forecasts comes from

error cancellation of model biases. Doblas-Reyes

et al. (2003) found a multimodel forecast of the NAO

was superior to individual models using European

models from the DEMETER project (Palmer et al.

2004); however, NAO skill is marginal in these

old-generation models. Athanasiadis et al. (2017) in-

vestigated the NAO and Arctic Oscillation (AO) us-

ing CFSv2, GloSea5, and CMCC seasonal forecasts.

They found an increase in the correlation coefficient

with the observed NAO in part coming from the

increased ensemble size. Ehsan et al. (2017) found

good skill in predicting winter precipitation in two

subtropical regions using NMME and the ECMWF

System 4 models.

In this study we make use of a grand multimodel en-

semble (GMME) to investigate the skill of seasonal

forecasts of wind and waves in the North Atlantic. The

GMME is a comprehensive multimodel study using

models in the North American Multimodel Ensemble

(NMME) and models in the European Multimodel

Seasonal-to-Interannual Prediction project (EUROSIP).

EUROSIP is designed to provide multimodel forecasts

from independent coupled seasonal forecasting systems

(see https://www.ecmwf.int/en/forecasts/documentation-

and-support/long-range/seasonal-forecast-documentation/

eurosip-user-guide/multi-model for more information).

While, previous studies have focused on seasonal fore-

casting of surface winds, to our knowledge, this is the

first study looking at seasonal ocean wave forecasts

using a multimodel ensemble.

This paper is structured as follows. The datasets,

model experiments, and skill metrics are described in

section 2. The spatial skill levels of the forecasts are

shown in section 3. Section 4 shows the relationship

between wind and waves and MSLP as well as

quantifying how well the models forecast year-to-

year variability. Section 5 shows the relationship of

the NAO to large-scale environmental conditions,

FIG. 1. RPSSs for DJF forecasts of 10-m

wind speed using December initial condi-

tions: (a)CanCM3, (b)CanCM4, (c)CCSM4,

(d) CFSV2, (e) GloSea5, (f) System 4, (g)

System 5, and (h) GMME.
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and section 6 discusses its impact on local surface

winds and waves. Examples of where the multimodel

ensemble performed well and poorly are given in

section 7. Section 8 shows forecast error growth with

increasing lead time, and section 9 quantifies the skill

improvement of the multimodel forecasts. Finally, the

discussion is given in section 10, and the conclusions

are presented in section 11.

FIG. 2. As in Fig. 1, but for significant

wave height.

FIG. 3. As in Fig. 1, but for mean

wave period.
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2. Methodology

a. Seasonal forecast models

The seasonal forecast models used in this study are

shown in Table 1. It is worth noting that CFSv2 and

GloSea5 are lagged ensemble starts, whereas all other

models initialize on the first of everymonth. BothCFSv2

andGloSea5 have high ocean resolutions: 0.58 and 0.258,
respectively. Whereas the other models have ocean

resolutions of approximately 18. A higher ocean reso-

lution is advantageous as it provides more robust sea

surface temperature gradients, which are important for

accurately simulating synoptic atmospheric variability

(Kirtman et al. 2012; Parfitt et al. 2017). The models

with a resolved stratosphere are GloSea5, System 4, and

System 5. Ten ensembles are used for each model

throughout this study to ensure a fair comparison and

to remove any bias caused by the lagged starts of

CFSv2 and GloSea5. All datasets have been interpolated

to 18. The data are averaged over the winter months of

December–February (DJF) for analysis after forcing the

wave model with high-frequency 6-hourly wind data.

The time period of interest is from winter 1992/93 to

winter 2009/10. While there are issues with using a small

sample size (Siegert et al. 2016; O’Reilly et al. 2017a), it

is the only time period with overlapping data for all

seven models. The environmental variables of SST,

MSLP, geopotential height at 500hPa (Z500), and zonal

FIG. 4. Signal-to-noise ratios of DJF forecasts using December initial conditions from the GMME: (a) 10-m wind speed, (b) significant

wave height, and (c) mean wave period.

FIG. 5. The observed loading patterns of the first EOF for the DJF average: (a) 10-m wind speed, (b) significant wave

height, (c) mean wave period, and (d)MSLP in the spatial domain 1008W–308E, 08–808N, for the years 1994–2010

in the ERA-Interim dataset. The eastern Pacific and land points have been masked out of the calculation.
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FIG. 6. The black line in all panels indicates the observed 10-m wind speed PC1 corresponding to the

EOF in Fig. 5a. The red line is the model forecast using December initial conditions for (a) CanCM3,

(b) CanCM4, (c) CCSM4, (d) CFSV2, (e) GloSea5, (f) System 4, (g) System 5, and (h) GMME. The

correlation coefficient, p value, and mean absolute error are given in the top right-hand corner for each

model. The absolute error for each year is given below the x axis for each model. The locations of the

maximumandminimumof theEOF are shown in the top left alongwith the variance explained by theEOF.
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FIG. 6. (Continued)
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FIG. 7. As in Fig. 6, but for significant wave height.
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FIG. 7. (Continued)
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FIG. 8. As in Fig. 6, but for mean wave period.
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FIG. 8. (Continued)
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wind at 200hPa (U200) are investigated in relation to the

NAO. Unfortunately, data for sea ice, stratosphere di-

agnostics, and ocean heat content diagnostics were not

available for all seven models and therefore are not in-

cluded in this study.

b. Ocean wave model

The 10-mwinds from the seasonal forecast models are

used to force WaveWatchIII experiments. The 4.18

version (Tolman et al. 2014) is used with Ardhuin et al.

(2010) wind input and dissipation source terms. The

experiments are integrated over a large Atlantic domain

(1008W–308E, 708S–808N) to ensure swell waves are

captured. ETOPO1 (Amante and Eakins 2009) is used

for the bathymetry, and islands smaller than 18 are in-

cluded at obstruction points defined by Chawla and

Tolman (2008). In this study the wave variables of sig-

nificant wave height (Hs 5 4
ffiffiffiffi
E

p
), where E is the total

variance given as the sum over all frequency and di-

rection bins:
Ð 2p
0

Ð ‘
0
F(f , s) df ds, and mean wave period

(T015Tm0,15 2ps21), are investigated.

c. Reanalysis data

Model forecast results are compared to reanalysis

data, which are used as close to the observed values

and have the advantage of spatial homogeneity. The

European Centre for Medium-Range Weather Fore-

casts interim reanalysis (ERA-Interim; Dee et al. 2011)

is used as previous studies have shown, compared to

other reanalyses, that ERA-Interim has the smallest

bias for 10-m winds (Stopa and Cheung 2014). The

horizontal resolution of ERA-Interim is ;80km; how-

ever, the data are interpolated to 18. Even though

ERA-Interim is coupled to a wave model, it uses a

different wave model than that used in this study

(Wave Assimilation Model; Bidlot et al. 2007). There-

fore, the ERA-Interim winds are used as input to the

WaveWatchIII model and compared to the forecasts.

We have opted not to bias correct the winds, such as

is done in Durrant et al. (2013, 2014), because of the

complexity of a multimodel approach. Using the un-

biased winds from all models and ERA-Interim allows

for a fair comparison. The surface winds provide me-

chanic energy into the ocean, which generates wind

waves (Simmonds and Keay 2002). The wind waves

develop into swell waves once they propagate away from

the energy source.

d. Forecast skill assessment

The quality of the forecasts is assessed using the

probabilistic verification metric of rank probability skill

score (RPSS). The RPSSmeasures the probabilistic skill

relative to a climatological forecast and a value greater

than zero is said to be better than using climatology

as the predictor (Weigel et al. 2007). The systematic

error is removed from the models by subtracting

the observed climatology from the predictor clima-

tology before the predictions and observations are

split into terciles. This is discussed fully in Bell and

Kirtman (2018).

3. Spatial probabilistic skill assessment

a. 10-m wind speed

The ability of the models to predict the DJF 10-m

wind speed using December initial conditions is

shown in Fig. 1. RPSS values greater than zero, in red,

show where the forecast models have skill. Figs. 1a–g

show the skill for the individual models in alphabeti-

cal order as they are presented in Table 1. The models

have varying levels of skill, and the patterns are

slightly different for each model. The west subtropical

region around 308N is the most predictable region as

all models tend to be able to forecast this region. Skill

becomes noisier in the extratropics; however, some

models such as CCSM4, CFSv2, and GloSea5 are

skillful around the British Isles. CFSv2 and GloSea5

have high levels of skill across the entire North

Atlantic, as shown by the average RPSS value given

at the top right in each panel. RPSS is noisier in the

other models, and the spatial average RPSS value

is close to zero. Figure 1h shows the RPSS for the

GMME. The spatial pattern is smooth, and the spa-

tially averaged RPSS value is greater than any of the

individual models.

b. Significant wave height

The RPSS of forecast Hs (Fig. 2) is mostly similar to

the RPSS of the 10-m wind speed (Fig. 1), but there are

spatial differences. Skill in the 10-m wind speed is re-

lated to skill in Hs downstream of the winds such as in

the southwest and northeast regions. This is due to wave

growth along the direction of the winds and is observed

in other basins (e.g., Bell and Kirtman 2018). Skill can

be observed in three distinct regions: the western trop-

ical North Atlantic, the subtropical North Atlantic,

and the northeast North Atlantic. CFSv2 and GloSea5

have the highest levels of forecast skill compared to

other models. The GMME has a similar level of skill to

GloSea5 when the RPSS is averaged over all grid points

in the spatial domain.

c. Mean wave period

Figure 3 shows the RPSS of the forecast mean wave

period T01. Not only is T01 related to the 10-m wind
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speed but to the wind direction and fetch length as well.

The three regions of predictability have a southwest–

northeast tilt, which reflects the T01 mean climate.

CFSv2 and GloSea5 are the most skillful models across

the entire basin but System 5 has large regional RPSS

values in the middle of and to the northeast of the ba-

sin. The regional skill in forecasting 10-m wind speed in

CCSM4 does not translate into a skillful T01 forecast,

most likely because of limited skill in the wind–wave

generation regions (the west coast of Africa and the

U.S. East Coast). The winds in these regions are im-

portant as errors in wind direction and fetch length

here will lead to errors in T01 downstream. Similar to

Fig. 2, the GMME forecast of T01 is as skillful as the

best model, GloSea5.

d. Signal-to-noise ratio

The RPSS results should be looked at in context

with the signal-to-noise ratio (StN ratio; e.g., Kumar

2009) to provide an understanding of how confident a

forecast is. We use the methodology of Athanasiadis

et al. (2017) and define signal as the standard de-

viation of the ensemble means and noise as the

standard deviation of the ensemble members. This

calculation yields a range between zero and one with

zero indicating regions that have large noise and

therefore large ensemble spread. We show the StN

ratio for 10-m wind speed (Fig. 4a), Hs (Fig. 4b), and

T01 (Fig. 4c) from the GMME. It is interesting to note

the regions of low StN ratio tend to occur down-

stream of the large-scale circulation, such as to the

east of the Caribbean and to the west of western

Europe. Therefore, forecast skill in the center of the

basin, where the StN ratio is large can be viewed

with a high level of confidence.

4. Temporal deterministic skill assessment

The spatial pattern of variability of winter wind and

waves in the North Atlantic is largely explained by

the first empirical orthogonal function (EOF1) in

the spatial domain 1008W–308E, 08–808N.We show the

spatial loading pattern of EOF1 for 10-wind speed

(Fig. 5a),Hs(Fig. 5b), T01 (Fig. 5c), and MSLP (Fig. 5d);

in addition, the variances explained by EOF1 are

31%, 44%, 55%, and 59%, respectively. The spatial

patterns look markedly similar for all panels. For

MSLP and Hs there is a dipole in the northeast North

Atlantic that resembles that of the NAO. From

hereon we refer to MSLP EOF1 and the NAO. For

10-wind speed the pattern is more tripolar, as there

is some variability in the tropics. Finally, EOF1 of

T01 shows a northeast–southwest tripole, along the
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FIG. 9. As in Fig. 6, but for mean sea level pressure.

44 WEATHER AND FORECAST ING VOLUME 34

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/19/23 01:54 PM UTC



FIG. 9. (Continued)
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direction of the 10-m wind. There is a strong case to be

made here that a skillful forecast of surface wind

and waves largely depends on a skillful forecast of

the NAO due to similar patterns of variability. For

the temporal analysis we use the first principal

component (PC1) related to EOF1 calculated using

the methodology of Dawson (2016). The advantage

of using a PC instead of a point-based analysis is that

it will take into account structural differences be-

tween the models.

a. 10-m wind speed time series

The red lines in Figs. 6a–g are ensemble-mean fore-

cast PC1s for the individual models using December

initial conditions. Additional information about

the model’s PC1 is given in the top-left corner of the

panels. Figure 6h is the GMME PC1 forecast. The

correlation coefficient, p value of the correlation co-

efficient, and mean absolute error are given in the top-

right corner of all panels. The absolute error for each

year is given below the panel. The PC1 is well predicted

in CFSv2, GloSea5, and System 5, with correlation

coefficient values of 0.72, 0.77, and 0.7, respectively.

The GMME forecast has a correlation coefficient of

0.71 and is similar to the superior models. The other

models, excluding System 4, have correlation values

between 0.44 and 0.53. System 4 has a low correlation

coefficient value and is largely a results of two years

when it failed to capture the sign of the forecast: 1998

and 2009.

b. Significant wave-height time series

The results of year-to-year forecasting of Hs (Fig. 7)

are similar to that of 10-m wind speed but with slightly

lower skill. For example, the best models—CFSv2,

GloSea5, and System 5—have correlation coefficient

values between 0.51 and 0.76. This is not surprising

as the observed PC1 results are very similar for Hs and

10-m wind speed, such as the large negative event in

2009. For the GMME (Fig. 7h) the forecasts are gen-

erally good. However, the 1997 forecast predicted a

negative pattern of EOF1, whereas a neutral pattern

was observed.

c. Mean wave period time series

Most of themodels that did not accurately forecast the

time series of 10-m wind speed (and therefore Hs) did

not forecast the time series of T01 (Figs. 8a–c,f). The

10-m wind speed alone does not explain the results of

the T01 variability. It is the large-scale wind climate that

FIG. 10. (a) Observed correlation coefficient of DJF SST and MSLP PC1 (see Fig. 9). (b). GMME mean forecast of DJF SST and

MSLPPC1 correlation coefficients usingDecember initial conditions. Stippling shows points significant at the 99% level calculated using a

one-sided t test for positive values and calculated using the survival function for negative values.
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controls the wind direction and fetch length. Therefore,

local and remote regions require accurate wind fore-

casts. The models that do accurately forecast the time

series of 10-m wind speed also capture the variability of

T01 to a strong degree, such as GloSea5, which has a

correlation coefficient of 0.84. For the models that have

poor forecasts for the 10-m wind speed the resultant T01

is worse. In these cases (CanCM3, CCSM4, and System

FIG. 11. As in Fig. 10, but for geopotential height at 500 hPa.

FIG. 12. As in Fig. 10, but for zonal wind at 200 hPa.
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4) there is error propagation arising from differences in

wind speed, wind direction, and fetch length.

d. NAO time series

The NAO is well predicted in CFSv2 and GloSea5,

with correlation coefficient values of 0.74 and 0.64,

respectively. CCSM4 is shown to predict the NAO well

with a correlation coefficient value of 0.64; however,

wave forecast skill in CCSM4 is limited to the northeast

North Atlantic, where the NAO is most dominant. The

GMME forecast has a correlation coefficient of 0.69

and is only behind CFSv2. The results are similar to

FIG. 13. As in Fig. 10, but for MSLP.

FIG. 14. As in Fig. 10, but for wind speed at 10-m height in the North Atlantic.
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those of the wind and wave variables discussed above.

This demonstrates there is a strong relationship between

the NAO, surface winds, and surface waves.

Table 2 shows the ranking of all eight models

in terms of yearly absolute error. The last column is

the sum of the ranks. Table 2 highlights the impor-

tance of using multimodel forecasts, as the ‘‘best’’

model varies from year to year. CFSv2 has the best

ranking out of all the models, followed by GMME,

GloSea5, and CCSM4. System 4 and System 5 have

similar rankings, followed by CanCM3 and CanCM4.

The top row in Table 2 gives the sum of the models’

absolute error and defines years that are more pre-

dictable than others. This is discussed further in

section 7.

5. NAO and large-scale environmental conditions

The NAO is influenced by a combination of

teleconnections from large-scale environmental conditions

FIG. 15. As in Fig. 10, but for significant wave height in the North Atlantic.

FIG. 16. As in Fig. 10, but for mean wave period in the North Atlantic.
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as well as internal processes. The results in this section

investigate the relationship between large-scale environ-

mental conditions and the NAO. The results ensure that

the forecasts are predicting the NAO for the right reasons.

Variables considered include SST, Z500, U200, and MSLP.

a. Sea surface temperature

The observed correlation coefficient of MSLP PC1

(the black line in Fig. 9) with SST is presented in

Fig. 10a. Significant points at the 99th percentile value

are shown via stippling. There is a strong dipole in the

North Atlantic, as discussed in Brayshaw et al. (2009),

that has a large influence on the NAO. There are how-

ever dipoles outside of the North Atlantic that are cor-

related with the NAO. Examples include the regions in

the subtropical North Pacific and the South Atlantic.

Figure 10b shows the same relationship using the GMME

forecast and Fig. 10c is GMMEminus the observations. The

GMMEcaptures the large-scale spatial relationshipbetween

SST and the NAO; however, there are some regional dif-

ferences. For example, the GMME has a larger correlation

with eastern tropical Pacific SSTs, whereas this relationship

FIG. 17. (left) Observed standardized anomalies for DJF 2002/03 of (a) SST, (d) geopotential height at 500 hPa, (g) zonal

wind at 200 hPa, and (j) MSLP. The black contour shows regions that have a correlation coefficient with MSLP PC1 greater than 0.5.

(b),(e),(h),(k) As in the left panels, but using the GMME mean. (c),(f),(i),(l) Kernel density estimates of values averaged over the

black contour in the observed plot. The red dot is the observed value, the short blue lines along the x axis are the data for the individual

ensemble forecasts, and the blue line is the kernel density estimate.
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is more noisy in ERA-Interim. The GMME forecast corre-

lation pattern in the North Atlantic is slightly weaker than

observed, and few points are statistically significant.

b. Geopotential height at 500hPa

The observed correlation of MSLP PC1 with Z500 is

presented in Fig. 11a. There is a clear NAO pattern in

the North Atlantic and to a lesser degree a signal in the

North Pacific. Points in the Southern Ocean that are

significant are likely to be related to the southern an-

nularmode, which shows variability over a wide range of

time scales (Simmonds and King 2004). The GMME

forecast correlation of MSLP PC1 withZ500 is very good

in the North Atlantic (Fig. 11b). Outside of the North

Atlantic, the relationship is stronger in GMME than

observed (Fig. 11c), as the GMME forecasts a broad

hemispheric oscillation in both hemispheres.

c. Zonal wind at 200hPa

The U200–NAO correlation coefficient is a noisier field

than the previous environmental variables (Fig. 12). The

observed pattern in the North Atlantic shows the largest

signal in the NAO region but there are regions of alter-

nating correlation coefficient signs that extend south

throughout the Atlantic and east to central Europe

(Fig. 12a). There is also a tripolar pattern in the North

Pacific. The GMME forecasts of the U200–NAO corre-

lation coefficient are much smoother than observed and

the banding is too zonal (Fig. 12b). The pattern in the

North Pacific is also too strong in the GMME forecasts.

d. Mean sea level pressure

The observed correlation coefficient of DJF MSLP

withNorthAtlanticMSLP PC1 (Fig. 13a) shows anNAO

pattern that is expected, given the construction of MSLP

PC1. There is also a strong relationship with mean sea

level pressure in the central to northeast Pacific. The re-

gion with the largest correlation coefficient is shifted

farther north in the GMME forecast compared to the

observations (Fig. 13c). In addition, the negative corre-

lation coefficient in the western Pacific is much stronger

in the GMME forecast. However, the differences are

small in the regions with known physical relationships to

the NAO: the NorthAtlantic and tropical eastern Pacific.

6. NAO and winds and waves in the North Atlantic

The impact of the NAO on the winter wind and wave

climate in the North Atlantic is presented below for

10-m wind speed, Hs, and T01.

FIG. 17. As in (a)–(l), but for (m)–(o) wind speed at 10-m height, (p)–(r) significant wave height, and (s)–(u) mean wave period.
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a. 10-m wind speed

The NAO’s impact on 10-m wind speed is a tripolar

pattern (Fig. 14a), as discussed in previous studies (e.g.,

Fig. 5a in Zubiate et al. 2017). It is encouraging that the

GMME forecast captures the large-scale tripolar pat-

tern. Some regional differences exist such as theGMME

forecast showing a correlation of the opposite sign in the

Gulf of Mexico compared to the observations. The

GMME in addition has a much stronger correlation

coefficient in the extratropics (Fig. 14c). It is worth

noting that the spatial pattern of the NAO–10-m wind

speed correlation is strongly related to the RPSS spatial

pattern (Fig. 1 c), highlighting the importance of the

NAO in predicting winter 10-m wind speed.

b. Significant wave height

The NAO influences Hs in a northeast–southwest

pattern that takes into account wave growth along

the wind direction (Fig. 15a). The GMME correctly

predicts this large-scale pattern (Fig. 15b) but the

regional differences, such as stronger correlation in

the tropics and extratropics, arise due to the wind

forcing (cf. Fig. 15c with Fig. 14c).

c. Mean wave period

The NAO tripolar pattern for T01 has an east–

west pattern along the major axis of the jet stream

(Fig. 16a). During NAO positive (negative) years the jet

stream is stronger (weaker) and farther north (south).

FIG. 18. As in Fig. 17, but for DJF 2008/09.
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This results in longer- (shorter) period waves in the

northeast part of the basin. The differences in the

GMME forecast and the observations are small in

the central part of the basin, the negative correla-

tion area (Fig. 16c). Similar to 10-m wind speed and

Hs, the relationship is too strong in the tropics and

extratropics.

7. Case studies

The advantage of a multimodel ensemble forecast

is explored by looking at individual winter forecasts.

Spatial anomalies and probability distributions are

investigated for the environmental patterns discussed

in section 5. These case studies are selected in terms

of the best and worst forecasts using the sum of the

models’ absolute error for each year (Table 2). Winter

2002/03 is chosen as a good forecast as all the models

predicted the NAO. All model forecasts, apart from

CanCM3, had an absolute error of 0.2 or less for this

year for the NAO. Winter 2008/09 is chosen as a poor

forecast as all models fail to capture the magnitude of

the negative NAO event. The model sum absolute error

for this winter is 10.4, of which CanCM3 and System

4 made large contributions to.

a. Winter 2002/03: A good multimodel ensemble
forecast

TheNAOduring winter 2002/03 was close to zero. It is

therefore surprising that this year was well forecast as

models tend to struggle to predict near-normal condi-

tions compared to above- or below-average conditions

(van den Dool and Toth 1991). The SST in the North

Atlantic was slightly warmer than average (Fig. 17a).

The GMME forecast is closer to average in the North

Atlantic, in particular, in the region where the correla-

tion coefficient is greater than 0.5 for the MSLP PC1

and SST (the black contour in Fig. 17b and see Fig. 10b).

The ensembles are averaged over this region and shown

as a probability density function in Fig. 17c. The red

circle is the observed value. The GMMEZ500 forecast as

shown in Fig. 17f is good, as most ensembles predict

near-normal conditions, although two ensembles forecast

large negative anomalies. WeakerU200 in the region with

large correlationwith theNAO is correctly forecast in the

GMME (Fig. 17h). The difference between the GMME

forecast and observed values for MSLP is small in the

North Atlantic (Fig. 17k). While the large-scale envi-

ronmental conditions are well forecast for the neutral

NAO winter, its impact on the wind and wave climate is

FIG. 18. (Continued)
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not as well captured. Most ensembles predict near-

normal conditions for the wind and waves (Figs. 17o,r,u);

however, below-average conditions were observed.

b. Winter 2008/09: A poor multimodel ensemble
forecast

The NAO during winter 2008/09 is the strongest

negative NAO in the forecast period. There were large

SST anomalies in theNorthAtlantic in the region, which

is strongly related to the NAO Fig. 18a, which explains

the large negative NAO. The GMME did well in pre-

dicting this pattern, but it struggled to forecast the

magnitude of anomalies, as shown in the probability

density function (Fig. 18c). The Z500 shows a clear neg-

ative NAO pattern (Fig. 18d). The GMME forecasts the

Northern Hemisphere response (Fig. 18e), however, it

does not capture the magnitude of the blocking event

over the Labrador Sea, as well as the magnitude of the

low in the central North Atlantic. Similarly, the GMME

forecasts of U200 and MSLP are of the right sign but are

too weak (Figs. 18g–l). The wind and wave patterns are

also too weak in the GMME forecasts although there

are a few ensembles that do correctly capture the ob-

served pattern (Figs. 18m–u).

8. Forecast error growth with lead time

Figure 19 shows the RPSS averaged over points in the

North Atlantic where the correlation with MSLP PC1 is

larger than 0.5 (see black contour in Fig. 17) for different

lead-time forecasts. For lead-time zero (December ini-

tial conditions) all parameters are skillfully predicted

with RPSS values greater than 0.1. The parameter that

is most predictable is SST with an RPSS of 0.4, followed

by MSLP. For November initial conditions predicting

DJF, a lead time of 1 month, the RPSS drops for all

parameters but the forecasts remain mostly still more

accurate than when using a climatological forecast. The

predictability of T01 drops notably in the November

initial conditions. Finally, using a lead time of 2 months,

the October initial conditions forecasts show negligible

skill in the North Atlantic for almost all parameters. The

SST forecast skill drops markedly to being much worse

than a climatological forecast. However, there is still a

small predictable signal in the MSLP.

9. How many models are needed for a skillful
multimodel forecast?

We show the RPSSs of all possible model combina-

tions averaged over the region defined in Fig. 19 for

10-m wind speed (Fig. 20a),Hs (Fig. 20b), T01 (Fig. 20c),

and MSLP (Fig. 20d). The maximum number of model

combinations with seven models is 35 using two- and

three-model combinations and the results are shown in

the box-and-whisker plot. For all parameters themedian

skill for two models, denoted by the orange line, is

double that of the median skill of the single models. The

RPSS for the seven-model combination is marginally

less than that of the best model (GloSea5) for 10-mwind

speed (0.2 and 0.21). However, removing CanCM3, the

only model with RPSS less than zero, gives an RPSS

greater than any individual model, 0.215. The best

forecast is given by combining CCSM4, CFSv2, and

GloSea5. The relationship is similar forHs and T01. The

best forecast for Hs is obtained by combining CFSv2

and GloSea5, whereas the best forecast for T01 is ob-

tained by combining CanCM4, CFSv2, and GloSea5.

The relationship for MSLP is different. The seven-

model combination is better than any of the individual

models. A combination of CCSM4, CFSv2, GloSea5,

and System 5 provides the best forecast.

10. Discussion

Seasonal forecasting of DJF winds and waves in the

North Atlantic are shown to be skillful using December

initial conditions with a combination of four NMME

models and three EUROSIP models. The large mul-

timodel ensemble dataset provides a comprehensive

FIG. 19. RPSSs (averaged over the same points as in Fig. 17) for

DJF forecasts using October–December initial conditions with the

GMMEmean. The variables, in order in the legend, are SST (blue),

geopotential height at 500 hPa (orange), zonal velocity at 200 hPa

(green), MSLP (red), wind speed at 10-m (violet), significant wave

height (brown), and mean wave period (pink). The black line is the

zero line, which is the RPSS for a climatological forecast.
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assessment of the uncertainty associated with seasonal

prediction. There are two standout models in the as-

sessment of individual models—CFSv2 and GloSea5;

both of which have a high level of skill at predicting

winds and waves in the North Atlantic as well as the

year-to-year variability. The correlation coefficient of

the ensemble mean forecast with the observed NAO is

0.74 for CFSv2 and 0.64 for GloSea5. Kim et al. (2012)

found CFSv2 captures the expected winter atmospheric

response to ENSO,moreso in the Pacific, but to a degree

in the North Atlantic. In addition, they showed CFSv2

has good predictability skill for SST in the North

Atlantic. GloSea5’s ability to forecast the NAO at

various time scales is given in Scaife et al. (2014),

Athanasiadis et al. (2017), and Clark et al. (2017). Scaife

et al. (2014) determine GloSea5’s skillful forecast is due

to the high-resolution ocean model (0.258) as well as a
resolved stratosphere. Further modeling studies may

break down the role of a high-resolution ocean model

versus a well-resolved stratosphere and their impor-

tance on the NAO.

The benefit of a multimodel ensemble forecast is

shown in the spatial maps of RPSS (Figs. 1–3) and the

Monte Carlo model combination analysis (Fig. 20). The

results are in line with other studies that found multi-

model ensemble forecasts are superior to individual

model forecasts (Palmer et al. 2004; Kirtman et al. 2014

and references therein). The results in this case how-

ever showed one could be more selective in the model

combinations. For example, selecting the three or four

best models often gave a slightly improved forecast

compared to the GMME. However, the best model

combination is dependent on the variable of interest.

Using all models available still provides robust skill. It

is impossible to know a priori which models will yield

the highest skill in combination for the operational

forecasting. One approach to address this, which has

been explored in O’Connor et al. (2017), is to use ma-

chine learning to weight models based on their spatial

and temporal biases. In light of this, using all models is

still recommended.

Correlation maps of the NAO with large-scale envi-

ronmental conditions for observations and the seasonal

forecasts help us to understand the model processes

when predicting the NAO and its impact on surface

winds and waves. However, mathematically the calcu-

lation merely yields an association, and the results must

be interpreted by considering dynamical plausibility.

For SST (Fig. 10), the dipole in the North Atlantic is

expected although there is still debate regarding the

role of the ocean versus atmospheric processes in forcing

the NAO (Czaja et al. 2013). The SST dipole in the

North Pacific is likely associated with the Arctic Oscil-

lation (AO; Thompson and Wallace 1998). This pattern

emerges as the AO and NAO are highly correlated

and the physical mechanisms associated with annual

modes for explaining the existence of the NAO are not

well understood (Ambaum et al. 2001). One could un-

dertake an idealized atmospheric general circulation

model experiment with SST forcing in the North Pacific

and climatology elsewhere to understand this further.

For Z500 (Fig. 11), the pattern in the North Atlantic–

European sector is well understood for its impact on the

geostrophic winds.

FIG. 20. RPSSs (averaged over the same points as in Fig. 17) for DJF forecasts of (a) 10-m wind speed, (b) significant wave height,

(c) mean wave period, and (d)MSLP usingDecember initial conditions with all possiblemultimodel combinations. The box-and-whiskers

plots display the multimodel combinations with the box outlining the bottom to top quartiles and the orange line as the median. The

whiskers extend to the first datum less (greater) than the first quantileminus (plus) 1.5multiplied by the interquartile range. The black line

in all panels is the zero line, which is the RPSS for a climatological forecast.
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The case study of winter 2002/03, when the GMME

correctly predicted near-normal NAO conditions, was

a central Pacific El Niño year (McPhaden 2004). The

Z500 winter anomaly shows a wave train emanating

from east of Hawaii (see Fig. 17d) into the North

Atlantic. However, this did not project onto the NAO

pattern and producedmore of an east–west dipole in the

North Atlantic. An average over the region related to

the NAO therefore gives near-normal conditions. The

model forecasts did not capture this wave train, and

therefore the spatial structure is different. The poor

NAO forecast during winter 2008/09 is well studied in

Harada et al. (2010) and Ayarzagüena et al. (2011).

A major stratospheric warming took place, but the

external factors were unfavorable so the event was

not well forecast. In this particular case it is likely

that the atmosphere influenced the North Atlantic

ocean beneath the storm track. It is worth mention-

ing that the majority of models correctly predicted

the sign of the forecast. It was only CanCM3 and

System 4 that predicted more near-normal conditions.

The poor NAO forecast translated to a poor forecast

of surface winds and waves in the North Atlantic with

almost all ensembles not capturing the magnitude of

the event.

Forecast skill, defined as RPSS of winds and waves in

the North Atlantic, decreases to near zero when in-

creasing the lead time to 2 months ahead of DJF. SST

forecast skill drops markedly but MSLP remains pre-

dictable at a lead time of 2 months despite other local

environmental conditions being difficult to forecast.

There is potential here to increase the lead time for the

NAO forecast and explore regions of predictability as

was done in Dunstone et al. (2016).

11. Conclusions

Wintertime wind and wave variability is largely

controlled by the NAO. Therefore, any skill in fore-

casting the wind and waves in the North Atlantic starts

with assessing the forecasting skill of the NAO. The use

of a grand multimodel ensemble (GMME) provides a

large ensemble size that is advantageous for forecasting

regions that areinherently noisy such as the extra-

tropics. TheGMMEprovides skillful forecasts of winds

and waves in the North Atlantic during the winter

months although it is limited to a 1-month lead time.

The most predictable regions are around the British

Isles, the Azores, and to the east of the Caribbean. The

GMME also predicts the year-to-year winter variabil-

ity of winds and waves to a high degree. An assessment

of the forecasting large-scale environment conditions

and their relationship to the NAO shows that the

models capture the local response in the North Atlantic

but tend to have a larger correlation in the tropical

Pacific than expected. The forecast response of the

NAO to surface winds and waves is well captured and

explains the spatial pattern of the rank probability skill

score: regions that have the strongest correlation with

the NAO are more predictable. The NAO does not

explain the entire pattern though and it is likely other

factors are at play. These include other modes of var-

iability such as the eastern Atlantic pattern as well as

remote wind forcing controlling the fetch length.

However, these are outside the scope of this study and

will be investigated in a future manuscript. A look at

two winter case studies shows how sea surface temper-

atures (SSTs) affect the atmospheric variability, which

in turn affects ocean winds and waves. The NAO of

2002/03 was well forecast despite it being near normal

as near-normal conditions are hard to forecast. The

tropical Pacific SSTs were well forecast, but the local

SSTs were not. This has the impact of reducing the

skill of the winds and waves in the North Atlantic. The

NAO forecast during winter 2008/09 was poor despite

the models capturing the sign of the event. Error was

propagated in the forecast from the poor NAO forecast

to a poor surface wind forecast and a poor ocean wave

forecast. A multimodel ensemble forecast provides ro-

bust skill and is often better than any individual model

for probabilistic skill assessments. The optimum forecast

can be produced by comparing all possible model com-

binations, and the best skill was found by combining

three or four models, depending on the parameter of

interest.
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